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The non-linear forced fibration of viscoelastic moving belts excited by the eccentricity
of pulleys is investigated. The generalized equations of motion are derived for a viscoelastic
moving belt with geometric non-linearities by adopting the linear viscoelastic differential
constitutive law. The method of multiple scales is applied directly to the governing
equations which are in the form of continuous non-autonomous gyroscopic systems. The
amplitude of near- and exact-resonant steady state response for non-autonomous systems
is predicted. The results obtained with quasi-static assumption and those without this
assumption are compared. Effects of elastic and viscoelastic parameters, axial moving
speed, and the geometric non-linearity on the system response are also studied.
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1. INTRODUCTION

Moving belts used in power transmission are an example of a class of mechanical systems
commonly referred to as axially moving materials. The forced vibration analysis of such
a system has been studied extensively. For linear vibration analysis of an axially moving
string, the classical modal analysis applied to the linear non-translating string model is not
directly applicable. Wickert and Mote [1] modified the classical modal analysis method by
casting the equations of motion for a travelling string into a canonical, first order form
and got the response in closed forms for axially moving materials subjected to arbitrary
excitation and initial conditions.

For non-linear forced vibration of moving materials, Bapat and Srinivasan [2] used the
method of harmonic balance to obtain the approximate form of the period–tension
relationship. Naguleswaran and Williams [3] showed that a Mathieu–Hill type of system
exists for a moving band or belt. Mote [4] predicted the stable–unstable boundaries by the
application of Hsu’s method. The frequency–amplitude relationship of the non-linear
plane motion of travelling cables with the Lagrangian strain is obtained by Luongo et al.
[5] using Galerkin method. Perkins and Mote [6] studied three-dimensional vibration of
travelling elastic cables. Wang [7] analyzed parametric instabilities in belt and chain
systems and the periodic tension fluctuations which are caused by the impulsive forces. The
dynamics stability of a moving string under three-dimensional vibration is investigated by
Huang et al. [8]. More recently, Moon and Wickert [9] developed a modal perturbation
solution in the context of the asymptotic method fo Krylov, Bogoliubov, and Mitropolsky
for a continuous, non-autonomous and gyroscopic system with geometric non-linearity.
Near- and exact-resonant response amplitudes were predicted by the approach.
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In all of the work mentioned above, the belt is assumed to be linear elastic and damping
is either ignored or introduced simply as linear viscous without reference to any damping
mechanism. However, belts are usually composed of some metallic or ceramic
reinforcement materials like steel-cord or glass-cord and polymeric materials such as
rubber. Most of these materials exert inherently viscoelastic behavior, i.e., they flow when
subjected to stress or strain. Such flow is accompanied by the dissipation of energy due
to some internal loss. To accurately describe the material property of moving belts,
viscoelastic constitutive relation should be employed.

Various methods have been developed for the vibration analysis of viscoelastic
structures. Findley et al. [10] used the correspondence and superposition principles to solve
the governing equations of the viscoelastic beams. Chen [11] used Laplace transform and
the resulting equation was solved by the finite element method. Fung et al. [12] employed
Galerkin approximation and reduced the governing equation to a third order non-linear
ordinary differential equation. The Stevens method was followed to analyze the stability
of the linear system. The method of variation of parameters and the method of averaging
were used to analyze the dynamic response of non-linear systems. The Routh–Hurwitz
criterion was adopted to investigate the stability of steady solutions of the parametric
resonance and the non-linear effects.

There is only one paper by Fung et al. [13] so far discussing the dynamic response of
a viscoelastic moving string. In the paper, the string material was assumed to be constituted
by the hereditary integral type. The governing equation was reduced to a set of second
order non-linear differential–integral equations and the resulting equations were solved by
the finite difference method.

In this paper, the non-linear forced vibration of viscoelastic moving belts is studied. The
linear viscoelastic differential constitutive law is employed to model the viscoelastic
characteristic of belt materials. The governing equations of motion are derived for a
viscoelastic moving belt with geometric non-linearities. The method of multiple scales is
applied directly to the equations which are in the form of continuous non-autonomous
gyroscopic systems. This direct treatment does not involve a prior assumption regarding
the spatial solutions. The amplitude of near- and exact-resonant steady state response for
non-autonomous systems is predicted. The results obtained with the quasi-static
assumption and those without this assumption are compared. The effects of elastic and
viscoelastic parameters, axial moving speed, and the geometric non-linearity on the system
response are also investigated.

2. EQUATIONS OF MOTION

Figure 1 shows a prototypical system of a moving belt. c is the transport speed of the
belt, r0, r1, e0 and e1 denote radii and eccentricities of the pulleys. The equation of motion

Figure 1. A prototypical model of a viscoelastic moving belt driven by eccentrically-mounted drive and pulleys.
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in the y direction can be obtained by Newton’s second law [13]:

0TA+ s1Vxx +Vxsx = r012V
1t2 +2c

12V
1x 1t

+ c2 12V
1x21, (1)

where the subscript notation x and t denote partial differentiation with respect to the
spatial Cartesian co-ordinate x and time t, V is the displacement in the transverse direction,
s is the perturbed stress, A is the area of cross-section of the string, r is the mass per unit
volume, and T is the initial force.

The system is subjected to the non-homogeneous boundary conditions

V(0, t)= e0 sin (V0t), V(L, t)= e1 sin (V1t), (2)

where L is the length of the belt span, and V0, V1 are rotational frequencies of the pulleys.
The substitution of displacement V with V+ e0 sin (V0t)+ (e1 sin (V1t)− e0 sin (V0t))(x/
L) renders the boundary conditions homogeneous, and the excitation is transferred from
the boundary to the domain [3]. Correspondingly, equations (1) and (2) are changed into
the form

0TA+ s1Vxx +Vxsx +
F(x, t)

A
= r012V

1t2 +2c
12V
1x 1t

+ c2 12V
1x21, (3)

V(0, t)=0, V(L, t)=0. (4)

Note that F(x, t) is the external force per unit length which is transferred from the
boundary support excitation.

In this paper, only the eccentricity of the right pulley is considered, and thus the external
force F(x, t) can be expressed as

F(x, t)= (x−2ir1)e1V
2 eiVt + cc, (5)

where V is the rotational frequency of the right hand pulley, and cc denotes the complex
conjugate of all preceding terms on the right side of equation (5). Under the assumption
of no slip, the relation between the excitation frequency and the transport speed is of the
form

V= c/r1. (6)

The one-dimensional linear differential viscoelastic constitutive law can be written as

s(t)=E*o(t), (7)

where the linear differential operator E* is determined by the viscoelastic property of belt
materials and may be handled formally as an algebraic quantity.

Applying the linear differential viscoelastic constitutive law, equation (7), and
considering the Lagrangian strain component, the perturbed stress is in the form

s=E*(1
2V

2
x). (8)

Substituting equation (8) into equation (3) yields

r
12V
1t2 +2rc

12V
1t 1x

+0rc2 −
T
A1 12V

1x2 =E*(1
2V

2
x)Vxx +Vx{E*(1

2V
2
x)}x +

F(x, t)
A

. (9)
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Introducing the following non-dimensional parameters,

n=
V
L

, j=
x
L

, t= t0 T
rAL21

1/2

, g= c0rA
T 1

1/2

,

E=
E*A
T

, f(x, t)=
F(x, t)L

T
,

the following non-dimensional equation of transverse motion can be obtained:

12n

1t2 +2g
12n

1t 1j
+(g2 −1)

12n

1j2 =N(n)+ f(x, t), (10)

where the non-linear operator N(n) is defined as

N(n)=E(1
2n

2
j)njj + nj{E(1

2n
2
j)}j . (11)

Equations (12) and (13) are the generalized equations of motion valid for all kinds of
viscoelastic models. As a first step, the most frequently used Kelvin viscoelastic model is
chosen to describe the viscoelastic property of the belt material in this paper. The
corresponding linear dimensionless differential operator E for Kelvin viscoelastic model
is

E=Ee +Ev
1

1t
, (12)

where

Ee =
E0A
T

, Ev = hX A
rTL2. (13, 14)

E0 is the stiffness constant of the spring and h is the dynamic viscosity of the dashpot.
Substituting equation (12) into equation (11), and with some manipulations, the

non-liear operator N(n) for the Kelvin viscoelastic model becomes

N(n)= 3
2Een

2
jnjj +Ev

1

1t
(1
2n

2
j)njj + njEv

1

1t
(njnjj ), (15)

where the first term on the right side of equation (15) is a non-linear term related to
elasticity and the last two terms are non-linear terms related to viscoelasticity.

Introduce the mass, gyroscopic, and linear stiffness operators as follows:

M= I, G=2g
1

1j
, K=(g2 −1)

12

1j2, (16)

where operators M and K are symmetric and positive definite for sub-critical transport
speeds and G is skew-symmetric and represents a convective Coriolis acceleration
component. Thus, equation (10) can be written in a standard symbolic form

Mntt +Gnt +Kn=N(n)+ f(x, t). (17)

3. NON-LINEAR FORCED VIBRATION ANALYSIS

In this section, the amplitude of near- and exact-resonant steady state response for
non-autonomous systems is predicted. The method of multiple scales [14] is applied directly
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to the equations which are in the form of continuous non-autonomous gyroscopic systems.
Introducing a small dimensionless parameter o as a bookkeeping device, equation (17) can
be rewritten as

Mntt +Gnt +Kn= oN(n)+ of(j, t). (18)

A second order uniform approximation is sought in the form

n(j, t, o)= n0(j, T0, T1)+ on1(j, T0, T1)+ · · · . (19)

Substituting equation (19) and the time derivatives in terms of T0 and T1 into equation
(18) and equating coefficients of like powers of o,

M
12n0

1T2
0
+G

1n0

1T0
+Kn0 =0, (20)

M
12n1

1T2
0
+G

1n1

1T0
+Kn1 =−2M

12n0

1T0 1T1
−G

1n0

1T1
+N(n0)+ f(j, t). (21)

All the excitation components on the right side of equation (21) except for f(j, t) are
evaluated from first order solution n0.

The solution of equation (20) is of the form

n0 =ck (j)Ak (T1) eivkT0 +c�k (j)A�k (T1) e−ivkT0, (22)

where the overbar denotes complex conjugate, vk is the kth natural frequency, and ck is
the kth eigenfunction. For linear moving belts, vk and ck are given by [1]

vk = kp(1− g2), ck =z2 sin (kpj) e(ikpgj). (23, 24)

Function Ak is in equation (22) will be determined by eliminating the secular terms from
n1. Substituting equation (22) into equation (21) leads to

M
12n1

1T2
0
+G

1n1

1T0
+Kn1 =M1k (Ee +2ivkEv )A3

k e3ivkT0

+[M2k (3Ee +2ivkEv )A2
kA�k −2ivkA'kMck −A'kGck ] eivkT0 + f0(j) eiVT0 + cc, (25)

where the prime indicates the derivative with respect to T1, and M1k , M2k are non-linear
spatial operators which are defined as

M1k =
3
2 01ck

1j 1
2
12ck

1j2 , M2k =
1
2 $01ck

1j 1
2
12c�k

1j2 +2
1ck

1j

1c�k

1j

12ck

1j2 %. (26, 27)

The solvability condition requires that the right side of equation (25) be orthogonal to
every solution of the homogeneous problem. For the case where internal resonance does
not exist, the solvability condition can be determined as

−2ivkA'kmk −A'kgki+(3Ee +2ivkEv )A2
kA�km2k + fk ei(V−vk )T0 =0 (28)

in which

mk = �Mck , ck�, gk =−i�Gck , ck�, m2k = �M2k , ck�, fk = �f0, ck�

(29–32)
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and the notation � · , · � represents the standard inner product of two complex functions
over j$(0, 1). Substituting the natural frequencies and eigenfunctions in equations (23) and
(24) into equations (29)–(32) gives

mk =1, gk =2kpg2, m2k =−1
4p

4k4(3+2g2 +3g4). (33–35)

Note that m2k and gk are real. In the near and exact-resonance cases, introduce a detuning
parameter m= o(1) defined by

V=vk + em. (36)

Substituting equation (36) into equation (28) leads to

−2ivkA'kmk −A'kgki+(3Ee +2ivkEv )A2
kA�km2k + fk eimT1 =0. (37)

For convenience, express Ak in the polar form

Ak = 1
2ak eibk. (38)

Note that ak and bk represent the amplitude and the phase angle of the response,
respectively. Substituting equation (38) into equation (37) and separating the resulting
equation into real and imaginary parts yields

1
2akb'k (2vkmk + gk )+

3a3
kEem2k

8
=−Re ( fk ) cos (mT1 − bk )+ Im ( fk ) sin (mT1 − bk ), (39)

−1
2a'k (2vkmk + gk )+

a3
kvkEvm2k

4
=−Re ( fk ) sin (mT1 − bk )− Im ( fk ) cos (mT1 − bk ).

(40)

Since T1 appears explicitly in equations (39) and (40), the equations are called a
non-autonomous system. It is convenient to eliminate the explicit dependence on T1,
thereby transforming these equations into an autonomous system. This can be
accomplished by introducing a new dependent variable uk defined by

uk = mT1 − bk . (41)

Using equation (41), equations (39) and (40) can be rewritten as

1
2ak (m− u'k )(2vkmk + gk )+

3a3
kEem2k

8
=−Re (fk ) cos (uk )+ Im (fk ) sin (uk ), (42)

−1
2a'k (2vkmk + gk )+

a3
kvkEvm2k

4
=−Re (fk ) sin (uk )− Im (fk ) cos (uk ). (43)

For the steady state response, the amplitude ak and the new phase angle uk in equations
(42) and (43) should be constant. Thus, setting a'k =0, u'i =0 and with some
manipulations, the amplitude and phase of the response can be determined from the
algebraic equations

c3(a2
k)3 + c2(a2

k)2 + c1(a2
k)+ c0 =0, (44)

uk =tan−1 0Ck Re ( fk )− (1+Dk ) Im ( fk )
(1+Dk ) Re ( fk )+Ck Im ( fk )1, (45)
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where

Ck =
vkEvm2k

2(2vkmk + gk )
, Dk =

3Eem2k

4(2vkmk + gk )
, (46, 47)

c0 =−((Re ( fk ))2 + (Im ( fk ))2), c1 = 1
4(2vkmk + gk )2m2, (48, 49)

c2 =
3Eem2k (2vkmk + gk )m

8
, c3 = 1

64((3Eem2k )2 + (2vkEvm2k )2). (50, 51)

Note that c0, c1 and c2 are independent of the viscoelastic property of the belt material.
Only c3 changes with Ev which is a measure of the degree of viscoelastic behavior of the
belt. Equation (44) has one real and two complex conjugate roots for moving speeds below
a critical fold velocity, and three real roots above that point.

Substituting equations (23), (34) and (35) into equations (46)–(51) yields

Ck =− 1
16p

4k4(1− g2)(3+2g2 +3g4)Ev , Dk =− 3
32Eep

3k3(3+2g2 +3g4), (52, 53)

c1 = k2p2m2, c2 =−
3Eek5p5

16
(3+2g2 +3g4)m, (54, 55)

c3 =
9E2

ek8p8

1024
(3+2g2 +3g4)2 +

E2
vk10p10(1− g2)2(3+2g2 +3g4)2

256
. (56)

If the ‘‘quasi-static stretch’’ is assumed, the steady response amplitude can also be
obtained using the same equation (44) by simply redefining M2k as

M2k =
12ck

31j2 g
1

0 01ck

1j 101c�k

1j 1 dj+
12c�k

61j2 g
1

0 01ck

1j 1
2

dj. (57)

Using the same definitions, m2k , Ck and Dk can be derived as

m2k =−
k2p2

6g2 (2k2p2g2(g2 +1)2 + sin2 (kpg)), (58)

Ck =−
Evp

2k2(1− g2)(2p2k2g2(1+ g2)2 + sin2 (kpg))
24g2 , (59)

Dk =−
Eepk(2p2k2g2(1+ g2)2 + sin2 (kpg))

16g2 . (60)

Similar to the previous calculations, the corresponding coefficients of equation (44), c1,
c2 and c3, are given by

c1 = k2p2m2, c2 =−
Eek3p3(2k2p2g2(1+ g2)2 + sin2 (kpg))m

8
, (61, 62)

c3 =
(9E2

e +4v2
kE2

v )k4p4(2k2p2g2(1+ g2)2 + sin2 (kpg))2

2304g4 . (63)

The response of the first order approximation is obtained by substituting the root of
equations (44) and (45) into equation (22) as

n0 =ck (j)1
2ak ei(Vt− uk ) + cc. (64)
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Using equation (37), the following relation can be obtained:

A'k =
(3Ee +2ivkEv )m2kA2

kA�k + fk eimT1

2ivkmk + igk
. (65)

Substituting equation (65) into (25) yields

M
12n1

1T2
0
+G

1n1

1T0
+Kn1 = f1(j)A3

k e3ivkT0 + f2(j, T1) eivkT0 + cc, (66)

where

f1(j)=M1k (Ee +2ivkEv ), (67)

f2(j, T1)= f(j) eimT1 +M2k (3Ee +2ivkEv )A2
kA�k

−(2ivkMck +Gck )
(3Ee +2ivkEv )m2kA2

kA�k + fk eimT1

2ivkmk + igk
, (68)

M1k =
3
2 01ck

1j 1
2
12ck

1j2 . (69)

The solution of equation (66), which is the corresponding response correction of n0, can
be obtained using separation of variables,

n1(T0, T1)= h1(j)A3
k e3ivkT0 + h2(j, T1)A2

kA�k eivkT0 + cc, (70)

where

h1(j)= s
n=21,22 · · ·

� f1(j), cn (j)�
1−3vk /vn

cn (j),

h2(j, T1)= s
n=21,22, . . .

n$ k

� f2(j, T1), cn (j)�
1−vk /vn

cn (j). (71, 72)

From equations (70)–(72) it is evident that the spatial variations of the first order solutions
are different from those of the linear solutions. Hence, the validity of the assumption that
the spatial variation can be represented in terms of linear eigenfunctions is questionable.
However, this assumption is adopted in the commonly used perturbation approach in
which the partial differential equation is discretized first using linear eigenfunctions.

4. NUMERICAL RESULTS

In this section, numerical results of steady response amplitudes near and at exact
resonance for moving belts are presented. Effects of the transport speed, nonlinearity and
the viscoelastic parameter on the steady state response are discussed.

To compare the results obtained in this study with those given in reference [9], linear
elastic constitutive law is first employed. Figure 2 shows the response amplitudes predicted
by the method of multiple scales under the quasi-static assumption and those in reference
[9]. The non-dimensional transport speed g ranges from 0·1 to 0·4 which includes the
resonant region. Three different values of the non-linear parameter Ee are chosen to
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Figure 2. Comparison of response amplitudes predicted by the method of multiple scales and those given in
reference [9] under the quasi-static assumption: w, method of multiple scales; ——, given in reference [9].

investigate the non-linear effect. The system parameters are e1 =0·00083, r1 =0·0733. It
is clear that the results obtained in this study are identical to those given in reference [9].
This shows the validity of the proposed method. It can be seen that the effect of the moving
speed on the response amplitude is significant. This is because both the linear natural
frequencies of the system and the excitation frequencies depend on the moving speed. For
moving speeds below a critical speed, the amplitude is single valued; for moving speed
above that critical speed, the response amplitude has three values corresponding to the
same transport speed g. Thus, the system shows a typical multi-valued non-linear
phenomenon. When the excitation frequencies determined by the moving speed are near
or at exact natural frequencies, the response amplitude becomes very large. In addition,
it is observed that the bending of the curves is responsible for the jump phenomenon. The
maximum amplitude is attainable only when approached from a lower moving speed. In
the multi-valued response, the intermediate response is unstable and hence, cannot be
produced both numerically and experimentally. However, the other two amplitudes are
stable. Note that Ee is a measure of non-linearity. The higher the value of Ee , the stronger
the non-linearity of the system. It can be seen that Ee has a significant effect on the steady
response amplitude of the system. With the increase of Ee , response under the same
transport speed decreases.

The response amplitudes obtained using the method of multiple scales without the
quasi-static assumption are shown in Figure 3. The same system parameters as those in
Figure 2 are adopted. It is clear that the results without the quasi-static assumption and
those with such an assumption are close to each other over the non-resonance region. The
difference, however, grows within the resonant region. This shows that the quasi-static
assumption is accurate at most time span. However, since the near- and exact-resonant
response is much larger, the differences between the results with the quasi-static
assumption and those without quasi-static becomes significant.

The effects of the viscoelastic parameter Ev on the response amplitude are illustrated in
Figures 4–6. The non-dimensional radius r1 and eccentricity of pulley e1 are 0·00083 and
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Figure 3. Comparison of response amplitudes without the quasi-static assumption and those with the
quasi-static assumption: w, without the quasi-static assumption; ——, with the quasi-static assumption.

0·0733. In Figure 4, Ee =1. Three different values of Ev are chosen as 0·1, 25 and 50,
respectively. From Figure 4, it is evident that the damping introduced by the viscoelastic
model reduces the amplitude of response, especially at the near- and exact-resonant region.
The amplitude of the response decreases as the damping increases. The maximum
amplitude reduction for Ev =25 is 40·3% while for Ev =50 the maximum amplitude
reduction is 55·6%. The degree of vibration reduction also depends on the non-linear
parameter Ee . Figures 5 and 6 show the response amplitudes corresponding to higher

Figure 4. Comparison of response amplitudes of different Ev for Ee =400: W, Ev =0; w, Ev =25; R, Ev =50.
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Figure 5. Comparison of response amplitudes of different Ev for Ee =800: W, Ev =0; w, Ev =25; R, Ev =50.

Figure 6. Comparison of response amplitudes of different Ev for Ee =1000: W, Ev =0; w, Ev =25; R,
Ev =50.

values of Ee , i.e., Ee =800 and Ee =1000, respectively. It is seen that under the same Ev ,
the amplitude increases as Ee increases. Therefore, the degree of vibration reduction
depends on the ratio Ev /Ee . When the ratio Ev /Ee is very small, the influence of
viscoelasticity on vibration reduction is not significant.

5. CONCLUSIONS

The amplitude of near- and exact-resonant response is predicted for forced vibrations
of viscoelastic moving belts excited by the eccentricity of pulleys. Based on the linear



.   . . 104

viscoelastic moving belts excited by the eccentricity of pulleys. Based on the linear
viscoelastic differential constitutive law, the generalized equations of motion are derived
for a viscoelastic moving belt with geometric nonlinearities. The method of multiple scales
is applied directly to the governing equations which are in the form of continuous
non-autonomous gyroscopic systems.

From the above study, the following conclusion can be drawn:
(1) The moving speed of belts has a significant effect on the steady state response since

both the linear natural frequencies and the excitation frequencies depend on the moving
speed. For moving speeds below a critical speed, the response amplitude is single valued;
for moving speed above that critical speed, the response amplitude has three values
corresponding to the same transport speed.

(2) The viscoelastic model can be used to accurately describe the damping mechanism
of belt materials. The damping introduced by the viscoelastic model determines the
vibration reduction. Therefore, it is possible to predict a desirable damping value that can
significantly reduce the transverse vibration of moving belts.

(3) The method of multiple scales is applied directly to the governing equations. No
assumptions regarding the spatial dependence of the motion are made while commonly
used perturbation approaches assume that the motion of the non-linear system has the
same spatial dependence as the linear system. Discrepancy between the approach proposed
in this paper and those commonly used perturbation approaches appears at the first level
approximation. The proposed approach can be generalized to other frequently used
viscoelastic models such as the three parameter model and other gyroscopic systems with
geometric non-linearity.

It should be mentioned that the viscoelastic property not only reduces the vibration, but
also shifts stability boundaries significantly in the parametric excitation analysis of moving
belts which will be shown in a future paper. Furthermore, a viscoelastic model can also
be used to predict belt creep which leads to the excessive slip of the belt drive system. More
work needs to be done to obtain understanding of the effects of the viscoelastic property
of belts.
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